
Semi-Supervised
Code Translation
Overcoming the
Scarcity of
Parallel Code Data

Ming Zhu1, Mohimenul Karim1, Ismini Lourentzou1,2,
Danfeng (Daphne) Yao1

mingzhu@vt.edu,mohimenul@vt.edu,lourent2@illinois.edu,danfeng@vt.edu
1Sanghani Center for AI and Data Analytics, Virginia Tech

Blacksburg, VA, USA
2 University of Illinois at Urbana-Champaign

Champaign, IL, USA

Presented by: Prayash Joshi, Zehong
Wang

Code Translation
The task of converting source code from one
programming language to another.

Limitations of Pre-LLM Approaches

Semantic
Gap

●Existing methods only have
token-level consistency, without
knowledge of programming
structure

Lack of High
Quality
Parallal
Code Data

●Poor quality dataset leads to
less accurate cross-language
allignment

●Existing Dataset have limited
supported languages & quantity

Automation

●Rule-based systems and
unsupervised approaches still
require non-trivial manual
parallel dictionaries

Introduction of LLMs for Code Tranlation

●Encoder-Decoder vs. Decoder Only Models

○ CodeT5+, CodeLLama, etc.

● Extensive pre-training on diverse code
corpora with large amounts of source code

○ Strengths in instruction based code
generation

●Wide range of supported languages

○ Allows for powerful streamlined
automation for code translation

Why is this important?

Code Migration Develop Faster Translation
Robustness

●Lower cost for migrating
existing codebases,
legacy code
maintenance, and new
platform development

●Automates manual code
porting to allow for
development of newer
features

●Speed-up in adapting
and testing new
strategies in different
languages

●LLMs still lack code
correctness guarantees
(“Shallow Translations”)

●Novelties in this domain
can improvide general
code generation with
LLMs

“Proposed Methodology: MIRACLE

Experimental Setup：

1. Datasets

● ECoST: Execution-validated dataset derived from CoST, containing 1,000 function-level pairs for C++, Java, Python, and
150 for C.

● CodeNet: Monolingual dataset with 87,000 "Accepted" submissions for synthetic data generation.

2. Baselines

● Pre-trained Models: PLBART (139M), CodeT5 (220M), CodeT5+ (770M).
● Unsupervised Models: TransCoder (110M), TransCoder-ST (110M).
● LLMs: CodeLLama-7B-Instruct, GPT-3.5, GPT-4.

3. Evaluation Metrics

● Computation Accuracy (CA@1): Measures functional equivalence by executing translated code and comparing
outputs.

Experiment output example：

Experiment Results:

1. Performance Comparison

● MIRACLE vs. Baselines:
○ C++↔Java: MIRACLE-CodeT5+ achieves 62.37% CA@1, outperforming TransCoder-ST (44.09%) and

CodeLLama-7B (30.11%).
○ Python↔C++: MIRACLE-CodeT5+ reaches 61.75% CA@1, surpassing CodeLLama-7B (49.70%).

● Low-Resource Language (C):
○ MIRACLE-PLBART improves C→C++ translation by 43% with only 150 training examples.

2. Curriculum Learning Effectiveness

● Training with DT→STAT→COMP→AND→annotated data boosts CA@1 by 25–30% across languages.
● Reversing the curriculum order degrades performance, highlighting the necessity of incremental quality.

3. Limitations of LLMs

● Shallow Translation: Open-source LLMs mimic source code syntax, causing errors like deque.empty() in Python→C++
translations.

● API Misuse: LLMs fail to handle language-specific features (e.g., bitwise operations in C).

Discussion
Questions

1 | Would you use this tool as
Software Engineers? If so,
How and When?

3 | When the translated code
has mistakes and cause
significant losses, where
should the responsibility be
allocated: the model
developer, the data provider
or the user?

2 | Should the generated code
follow the license agreement of
the original project and ensure
compliance during the data
generation process?

4 | How do you think bias with
automated code translation will
propagate as we use LLMs for
porting large projects to
suppport different languages?

