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Code Translation
The task of converting source code from one 
programming language to another.



Limitations of Pre-LLM Approaches

Semantic 
Gap

●Existing methods only have 
token-level consistency, without 
knowledge of programming 
structure

Lack of High 
Quality 
Parallal 
Code Data

●Poor quality dataset leads to 
less accurate cross-language 
allignment

●Existing Dataset have limited 
supported languages & quantity

Automation

●Rule-based systems and 
unsupervised approaches still 
require non-trivial manual  
parallel dictionaries



Introduction of LLMs for Code Tranlation

●Encoder-Decoder vs. Decoder Only Models

○ CodeT5+, CodeLLama, etc.

● Extensive pre-training on diverse code 
corpora with large amounts of source code

○ Strengths in instruction based code 
generation

●Wide range of supported languages

○ Allows for powerful streamlined 
automation for code translation



Why is this important?

Code Migration Develop Faster Translation 
Robustness

●Lower cost for migrating 
existing codebases, 
legacy code 
maintenance, and new 
platform development

●Automates manual code 
porting to allow for 
development of newer 
features

●Speed-up in adapting 
and testing new 
strategies  in different 
languages

●LLMs still lack code 
correctness guarantees 
(“Shallow Translations”)

●Novelties in this domain 
can improvide general 
code generation with 
LLMs



“Proposed Methodology: MIRACLE



Experimental Setup：

1. Datasets

● ECoST: Execution-validated dataset derived from CoST, containing 1,000 function-level pairs for C++, Java, Python, and 
150 for C.

● CodeNet: Monolingual dataset with 87,000 "Accepted" submissions for synthetic data generation.

2. Baselines

● Pre-trained Models: PLBART (139M), CodeT5 (220M), CodeT5+ (770M).
● Unsupervised Models: TransCoder (110M), TransCoder-ST (110M).
● LLMs: CodeLLama-7B-Instruct, GPT-3.5, GPT-4.

3. Evaluation Metrics

● Computation Accuracy (CA@1): Measures functional equivalence by executing translated code and comparing 
outputs.



Experiment output example：



Experiment Results:

1. Performance Comparison

● MIRACLE vs. Baselines:
○ C++↔Java: MIRACLE-CodeT5+ achieves 62.37% CA@1, outperforming TransCoder-ST (44.09%) and 

CodeLLama-7B (30.11%).
○ Python↔C++: MIRACLE-CodeT5+ reaches 61.75% CA@1, surpassing CodeLLama-7B (49.70%).

● Low-Resource Language (C):
○ MIRACLE-PLBART improves C→C++ translation by 43% with only 150 training examples.

2. Curriculum Learning Effectiveness

● Training with DT→STAT→COMP→AND→annotated data boosts CA@1 by 25–30% across languages.
● Reversing the curriculum order degrades performance, highlighting the necessity of incremental quality.

3. Limitations of LLMs

● Shallow Translation: Open-source LLMs mimic source code syntax, causing errors like deque.empty() in Python→C++ 
translations.

● API Misuse: LLMs fail to handle language-specific features (e.g., bitwise operations in C).



Discussion 
Questions

1 |  Would you use this tool as 
Software Engineers? If so, 
How and When?

3 |  When the translated code 
has mistakes and cause 
significant losses, where 
should the responsibility be 
allocated: the model 
developer, the data provider 
or the user?

2 | Should the generated code 
follow the license agreement of 
the original project and ensure 
compliance during the data 
generation process?

4 |  How do you think bias with  
automated code translation will 
propagate as we use LLMs for 
porting large projects to 
suppport different languages?


