
A Survey on Large Language 
Models for Code Generation  CS 5914

Presented by Prayash Joshi, Heesang Han Feb, 11, 2025

JUYONG JIANG∗, The Hong Kong University of Science and Technology (Guangzhou), China
FAN WANG∗, The Hong Kong University of Science and Technology (Guangzhou), China
JIASI SHEN†, The Hong Kong University of Science and Technology, China
SUNGJU KIM†, NAVER Cloud, South Korea
SUNGHUN KIM†, The Hong Kong University of Science and Technology (Guangzhou), China



Problem 
Statement 

This survey aims to to 
“bridge this gap by providing a 
systematic literature review that 
serves as a valuable reference for 
researchers investigating the 
cutting-edge progress in LLMs for 
code generation.”



Motivation 

Main motivations for studying Code Generation using LLMs:

1. Paradigm Shift in Development
- rule-based to AI-driven generation

2. Democratization & Productivity
- Reduced barrier to entry for coding

3. Industry Transformation
- Growing impact on software development 

practices



Background 
1. Model Architectures

a. Encoder-decoder : Dual-purpose architecture for understanding 
and generating code

b. Decoder-only : Specialized for generation tasks
2. Scale vs. Scope

a. General Purpose vs. Code Instructed
- Foundational Models (GPT-4, Claude)
- Specialized for programming tasks (Code Llama, Starcoder)

b. Training for Code Instructed
- Pre-training on large code repositories
- Instruction tuning for task alignment

c. Reinforcement Learning Refinements
- Feedback-based improvements
- Human preference alignment



Fig 2.
Overview of LLMs with encoder-decoder and 
decoder-only Transformer architecture for code 
generation



Fig 5.
A diagram illustrating the general training, inference, and evaluation workflow for Code LLMs 
and their associated databases



Fig 7. A diagram depicting the standard data preprocessing workflow utilized in the pre-training 
phase of LLMs for code generation



Research Questions 
RQ1:
 How can we categorize and evaluate the latest advances in LLMs for code generation?

RQ2:
 What are the key insights into LLMs for code generation?

RQ3:
 What are the critical challenges and promising research opportunities in LLMs for code 
generation?



Key Contributions 
1. Taxonomy of Code LLMs

- Categorizes LLM advancements across data curation, model training, evaluation, and 
applications 

2. Benchmark & Performance Analysis
- Compares LLM performance across HumanEval, MBPP, and BigCodeBench 
- Highlights the performance gap between open-source and closed-source models.

3. Domain Insights from different communities
- Provides of NLP and Software Engineering viewpoints
- Examines the carbon footprint and computational cost of training LLMs 
- Discusses bias, fairness, and responsible AI practices.



Fig 1.
A chronological overview of large language models (LLMs) for code 
generation in recent years. 



Fig 3.
Overview of the paper search and collection process.



Fig 4.
Data qualitative analysis. 
Top: Annual distribution of selected papers across various 
publication venues. 
Bottom: Distribution analysis of research topics covered in 
the included papers.



Benchmarks 

General Purpose
- HumanEval 
(Python, functional correctness)
- MBPP 
(Entry-level programming problems)
- BigCodeBench 
(Multi-domain complex tasks)

Competition-Based
- APPS 
(AI Programming Performance 
System)
- CodeContests 
(Competitive coding tasks from 
platforms like Codeforces)

Data Science-Oriented
- DS-1000
(Data science and ML-focused 
problems)
- ExeDS 
(Execution-based evaluation of 
statistical learning models)

Multilingual
- HumanEval-X 
(Supports Python, Java, C++, 
JavaScript, Go)
- MBXP & xCodeEval 
(Measure performance across 
multiple programming 
languages)

Repository-Level
- RepoEval 
(Codebase comprehension 
and bug-fixing)
- SWE-bench 
(Software engineering 
challenges requiring 
reasoning and modification)



Models 



Fig 14.
The general architecture of an 
LLM-powered autonomous 
agent system

Fig 15.
MetaGPT integrates human workflow 
efficiencies into LLM-based multi-agent 
collaboration to break
down complex code-related tasks into 
specific, actionable procedures.



Fig 9. Comparison of instruction tuning with various fine-tuning 
strategies and prompting for code tasks

Fig 10.
An illustration of full 
parameter fine-tuning (FFT) 
and parameter-efficient 
fine-tuning (PEFT) methods.



Fig 13. A workflow illustration of the Retrieval-Augmented Code 
Generation (RACG). 



Fig 16. The pipeline of (Code) LLM-as-a-judge for evaluating 
generated code by Code LLMs. 



Assumptions & Limitations 
1. Scope, Benchmark & Model Evaluation:

- HumanEval, MBPP, and Big CodeBench assumed to be representative of real-world programming 
challenges.

- Factors like maintainability, security, and runtime efficiency  not considered
- LLM-as-a-Judge methods introduce biases

2. Fast Advancement of AI:
- Survey captures research up to early 2024, major advancements have taken place

3. Database & Evaluation Bias:
- Study relies on publicly available datasets
- Bias towards papers from leading conferences and research labs.
- Most benchmarks focus on Python-based code generation

4. Computational & Environmental Costs:
- LLM training requires substantial energy, contributing to high carbon emissions
- Quantization and knowledge distillation help reduce compute costs but may impact performance

5. Ethical Constraints:
- Bias in training data can perpetuate security vulnerabilities, copyright risks, and exclusionary 

practices in generated code
- LLMs could be misused to generate malicious code or automate harmful software development



Result (datasets)  Fig 6.



Result (models)  Fig 6.



Result (improvement)  Fig 6.



Result (evaluation)  Fig 6.



Result (benchmark) 
MBPP Dataset

pass@1

Fig 17.



Result (benchmark) 

pass@1

BigCodeBench Dataset

Fig 18.



Discussions 
1. LLM-alignment

- Green, Responsibility, Efficiency, Safety, and Trustworthiness
- Reinforcement Learning with Human Feedback (RLHF)

2. Innovating model architectures tuned to code structures
- Non-transformer-based LLM for code generation?

3. Continuous learning for LLMs to keep pace with evolving coding 
knowledge



Conclusion 
This paper presents:

- Systematic literature review in LLMs for code generation. 
- Historical overview of evolution of LLMs for code generation
- Empirical comparison of LLMs for code generation with HumanEval, MBPP, 

and BigCodeBench benchmark.

The authors suggest:
- Future investigation regarding the gap between academia and practical 

development. 

The authors optimistically believe that LLM will ultimately change all aspects of coding and 
automatically write safe, helpful, accurate, trustworthy, and controllable code, like professional 
programmers, and even solve coding problems that currently cannot be solved by humans.



Thank You 
28

Energy 
Consumption

Malicious 
Code

IP & Copyright 
Abuse

“Prompt 
Engineers”


