
From Context to Deception: Simulating and Detecting LLM-Driven
Impersonation Attacks
PRAYASH JOSHI, Virginia Polytechnic Institute of Technology and State University, USA
PEIQING GUO∗∗, Virginia Polytechnic Institute of Technology and State University, USA

LLMs offer useful tools for writing, communication, and automation. How-
ever, they also poses serious risks. One of the most dangerous risks that it
poses is AI based impersonations. Scammers no longer need to use poor
grammar and fake accents and can take advantage of the use of AI now.
This paper presents a simulation type of attack that uses AI generated voice
and text to generate a personalized voice mail and conversations based on
the information scammers can use AI to search on an individual. We also
developed a detection model to identify fake voice mail messages. Our goal
is to raise awareness and possibly suggest ways for the average person to
stay safe.

ACM Reference Format:
Prayash Joshi and PeiQing Guo. 2025. From Context to Deception: Simulat-
ing and Detecting LLM-Driven Impersonation Attacks. ACM Trans. Graph.
37, 4, Article 111 (August 2025), 5 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

We wrote this report ourselves, not using any generative AI
technologies.

1 Introduction
Scams now a days are becoming harder and harder to detect. In the
past, strange speech patterns or errors were easy signs for people to
determine whether a phone call of voicemail is scam. Today, LLMs
can write personalized scripts from AI searches and use AI speech to
talk like real humans. Scammers now uses AI to build fake identities
and these identities can be used to contact people to deceive them.
Unlike phishing emails and messages, these attacks are verbal and
interactive. Our project simulates both the attack and the defense
of these senarios. In this project, we used open tools to create fake
voicemails and also build a model that flags possible AI messages.
This would show the risks and be able to help users to understand
how to defend themselves.

∗Both authors contributed equally to this research.

Authors’ Contact Information: Prayash Joshi, Virginia Polytechnic Institute of Technol-
ogy and State University, Blacksburg, USA, prayash@vt.edu; PeiQing Guo, guo1340@
vt.edu, Virginia Polytechnic Institute of Technology and State University, Blacksburg,
Virginia, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2025/8-ART111
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Methodology
Our method has two parts: offense and defense. The offense side
mimics an attacker using public tools and minimal data to build a
scam. The defense side detects whether a voicemail was created by
AI.

This full system lets us test both the problem and a possible
solution.

2.1 Offense
The goal of offense is to explore how malicious actors could lever-
age AI to create convincing impersonations with minimal initial
information, ie. name and location. The novelty of the offense is its
end-to-end pipeline that demonstrates how targeted voice phishing
attacks can be executed using commercially available AI services
and public data, with minimal jailbreaking.

2.1.1 Data Collection Strategy.
We found that majority of the U.S. population can be uniquely

identified using just three quasi-identifiers: 5-digit ZIP code, date of
birth, and gender. Based on this, our assumption is that attackers
have a long spreadsheet of information about attackers but we
designed our data collection form to gather minimal yet effective
identifying information to simulate an attack. In this case, we require
only first name, last name, and current location (city or ZIP code),
with optional fields for age, occupation, employer, and hometown.

Doing so allows us to mirrors real-world constraints, where at-
tackers would only have access to information readily available
in public profiles, company websites, or university directories. To
maintain ethical standards and trust, our form explicitly informs
users that additional information could enhance the specificity of
generated impersonation scripts and using this software can leak
personal information to models(use at own risk). The figure 1 shows
the user interface.

2.1.2 Attack Pipeline Architecture.
Our architecture leverages specialized AI models for different

stages of the impersonation process in a modular way. In the archi-
tecture diagram, Figure ?? you can notice the flow of the system from
getting user information to creating a script/voicemail/response and
where the defense comes into play. The pipeline consists of four
primary stages that work to create convincing impersonations.
Firstly, we get the information of our victims using Exa Search

API. We can retrieve publicly available information based on form’s
identifiers. We used the contextual search capabilities. It returned
links and relevant text snippets from across the web, significantly
reducing the effort required to accumulate target information, in a
short amount of time.
Secondly, for strategic planning, we implemented a reasoning-

focused approach using DeepSeek r1 model. This model analyzes

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


111:2 • Trovato et al.

the gathered information, selects the most appropriate scam type
based on demographic targeting, and generates a structured attack
plan that includes intent, hook, emotional levers, and a conversation
flow strategy.
Thirdly, content generation leverages Llama 3.3 70B for natural

language production. Llama is open-source with less guardrails.
Both initial voicemail scripts interactive conversation responses are
handled by this model. We selected this model for its balance of
instruction following, conversational abilities, cost and context size.
Lastly, the voice synthesis stage implements Deepgram’s text-

to-speech service to create realistic voice messages, allowing us to
ignore the obvious patterns from traditional robotic-sounding scam
calls.

The biggest strength of this architecture is its ability to automate
and target thousands of people per day at the cost of cents. The
system analyzes online information on a target and seamlessly in-
tegrate multiple specialized AI services. This would be an inciting
replacement for traditional systems.

2.1.3 Voice Synthesis Approach.
Personally, I feel that Voice quality significantly impacts the be-

lievability of phone-based social engineering attacks. Traditional
scams are often identifiable by their unnatural robotic voices or
non-native accents. Our approach overcomes this limitation by im-
plementing several enhancements to state-of-the-art text-to-speech
service.
The system employs carefully engineered prompt instructions

that direct the language model to include natural speech patterns
such as hesitations, self-corrections, and common filler words like
"uh" and "um" that authenticate human speech.
We also implemented a text preprocessing pipeline to remove

unnecessary quotation marks and converts smart punctuation to
standard formats. Upon cleaning the text, our text-to-speech engines
went from struggling with non-standard characters to ensuring
optimal voice clarity and naturalness. The UI also provides visual
feedback through a real-time waveform display.

2.1.4 Conversation Flow Design.
Our interactive conversation agent capable of maintaining contex-

tually relevant dialogue with targets. The goal here was to replicate
how a real conversation might go after getting a voicemail. Unlike
static scam scripts that follow rigid patterns, our system adapts dy-
namically to user responses, objections, and questions—a capability
that significantly enhances the attack’s efficacy. While the voice
response takes a while to generate, with distributed computing and
more efficient utilization of tensor processing units(TPUs) for text-
to-speech, our system could be served as an actual response agent
to realtime calls.
The conversation begins with a targeted voicemail designed to

elicit a callback. Once engaged, the system maintains a comprehen-
sive conversation history to ensure contextual consistency through-
out the interaction. This memory enables references to previous
statements. As the conversation progresses, the agent employs psy-
chological techniques derived from the attack plan, such as creating
artificial urgency, appealing to authority, or exploiting social trust
dynamics. We designed the agent to keep targeting until they can

Table 1. Selected Phone Scam Types and Their Target Demographics

Scam Type Target Demographics Success
Rate

Student Loan
Forgiveness

Federal student loan borrow-
ers, recent graduates

High

IRS Tax Debt
Relief

U.S. taxpayers during filing
season, recent immigrants

High

ICE/USCIS
Threat

International students, re-
cent visa holders

Medium

Bank Fraud
Alert

Retail banking customers,
high-net-worth individuals

Medium

Tech Support
Scam

Older adults, less tech-savvy
users

Medium

Note: Success rates reflect participant feedback on believability
in our simulated environment.

squeeze more sensative information they don’t know about the
target.

The conversational component utilizes a specialized prompt engi-
neering approach that instructs the model to maintain brief, natural-
sounding responses—typically limiting outputs to 2-3 sentences un-
der 50words—enhancing believability by avoiding the over-explanation
common in many AI systems. The prompt also includes guardrails
preventing the model from explicitly revealing its nature as an AI
or mentioning that it is conducting a scam.

The system’s approach to scam selection (Table 1) demonstrates
a concerning level of sophistication. The reasoning model analyzes
target demographics to select the most appropriate scam type, max-
imizing effectiveness based on statistical patterns of vulnerability.
For instance, international students are specifically targeted with
ICE/USCIS threat scenarios, while older adults receive tech support
scams tailored to their potential technical insecurities. All scam
categories selected based on most common scams experienced by
people this year.

2.2 Defense
We built a text-based detection model. It checks if a message was
written by AI. For this part, we used Python and Scikit-learn.

We collected AI and human-written voicemails. We cleaned and
labeled them. Then we used TfidfVectorizer to turn the messages
into numbers.

We trained a LogisticRegression model. It predicts if a message
is AI. We used three labels:

AI-Generated (probability > 0.75)
Likely AI (0.5–0.75)
Human (>= 0.5)
the function runs the input, predicts a label, and prints the result.
The model is fast and simple. It helps detect scams early, but it

has limits. We had more AI samples than human ones which caused
some bias. Also, we relized that short messages tends to be harder
to analyze because there’s not enough text to spot clear patterns.

However, this script is still ablt to help catch fake messages. It’s a
useful layer of protection.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2025.



From Context to Deception: Simulating and Detecting LLM-Driven Impersonation Attacks • 111:3

3 Implementation
The goal for the implementation of our attack was to create a fully
functional impersonation attack simulation platform using mod-
ern web development practices. This section explained in details
our technical approach, exploring how different components work
together to create a seamless and concerning impersonation experi-
ence.

3.1 Frontend Implementation
We developed the user interface using Next.js 15, a very popular
React framework. The component-based architecture is used to en-
capsulate specific functionality into modular, reusable units, such as
ProfileForm, SearchResults, AudioVisualizer, and InteractiveAgent.
Each component handles an aspects of the user experience. We
use react state management (useState and useEffect hooks) for the
application flow from form submission to result display. Subtle
Framer Motion made smooth animations between different applica-
tion states, to make this simulation look well polished.
We maintained code quality standards throughout development

with commenting and using best git practices. We implemented
TypeScript for type safety, proper error handling, and did tests
along the way. The codebase is managed using a GitHub reposi-
tory with conventional commit messages. In the future, we plan
to incopearte CI/CD workflows to ensure consistent quality and
deployment reliability.

Figure 1 illustrates the four main stages of the user journey: data
collection, information gathering, voicemail simulation, and inter-
active conversation. The interface design balances aesthetic appeal
with functional clarity, ensuring that users understand each stage
of the process while experiencing the concerning effectiveness of
AI-powered impersonation.

3.2 Frontend Server
Our server-side functionality is implemented as a set of API end-
points using Next.js serverless functions. These functions handle
the communication with external AI services and implement the
core logic of the attack pipeline. The /api/search-person endpoint
processes form submissions, queries the Exa Search API for rele-
vant information, and generates an attack plan using DeepSeek r1.
The /api/generate-voicemail endpoint creates personalized voice-
mail scripts based on the target’s profile using Llama 3.3 70B, while
/api/agent-response manages the conversational flow between the
user and the AI agent, maintaining context to ensure coherent in-
teractions.

Other endpoints handle specialized tasks. For instance, the /api/text-
to-speech converts text responses to natural-sounding speech using
Deepgram’s TTS API, and /api/transcribe processes audio responses
from the user (disabled in the demonstration for privacy reasons).
Each endpoint implements proper error handling, request validation
using Zod schemas, and appropriate rate limiting.

We leveraged the Vercel’s AI SDK to streamline interactions with
various LLM providers. This also makes the code manageable and
upgradable down the road. Additionally, this allowed us to focus
on the application logic rather than managing the complexities of

Table 2. Prompt Engineering Structure Components

Component Function

System Role Defines the model as "Impersonation-
Planner-v3" and describes input data
structures

Profile Verification Extracts verifiable facts from search
results with source attribution

Scam Selection Matches demographic data to appro-
priate scam types based on effective-
ness

Attack Plan Format Structures the attack with intent,
hook, emotional levers, and conver-
sational flow

Script Requirements Specifies first-person voice, verified
data only, appropriate tone, and clear
call-to-action

different AI service APIs. We follow REST principles, providing a
clean separation of concerns and facilitating future extensibility.

3.3 Prompt Engineering
Prompt engineering proved critical to the success of our system.
Rather than relying on complex jail-breaking techniques or exploita-
tion methods, we found that relatively simple role definitions and
structural guidance were sufficient to enable even foundational
LLMs to generate convincing impersonation content. Our approach
demonstrates that commercial AI models, even with safety measures
in place, will create potentially harmful content if they are carefully
crafted prompts.
The planning phase consists of a more detailed prompt struc-

ture that guides the reasoning model through several steps: parsing
and verifying information from web search results, matching target
demographics to appropriate scam types, generating a structured
attack plan with specific psychological levers, and creating a natural-
sounding script that incorporates verified information. The prompt
specifically instructs the model to maintain a private "scratch-pad"
for its reasoning, ensuring that the final output contains only the
structured attack plan without revealing the model’s internal delib-
eration process.
The conversation agent required a different prompt strategy fo-

cused on maintaining natural dialogue while implementing the
attack plan. This prompt instructs the model to keep responses brief
(under 50 words) and conversational, avoiding technical jargon or
overly formal language that might trigger suspicion. It includes spe-
cific guidance on addressing the target’s questions without revealing
the deceptive nature of the interaction.
Our voicemail generation prompt includes detailed instructions

for creating realistic messages with natural speech patterns, in-
cluding hesitations and self-corrections. It also specifies the inclu-
sion of realistic-sounding names and callback numbers, making
the voicemail’s even more authentic. Its clear that these prompting
techniques when be directed to generate content that facilitates

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2025.



111:4 • Trovato et al.

(a) Data Collection Form (b) Information Gathering Process

(c) Voicemail Simulation (d) Interactive Conversation

Fig. 1. User Interface Screens of the Impersonation Attack Demonstration System

potentially harmful social engineering attacks will do so. This is a
big concern and finding of our paper.

3.4 Model Selection
We did a series of selection for appropriate AI models for each
component of the pipeline. We identified specialized options that
excel at specific tasks within the impersonation attack workflow.
For planning and reasoning, DeepSeek r1 demonstrated great

performance in multi-step reasoning tasks. This model’s maintained
structured thinking and analyzed complex information. This made
it ideal for attack planning based on target profiles. The reasoning
capabilities allowed it to extract relevant facts from search results,
match them to appropriate scam types, and develop coherent attack
strategies that exploit psychological vulnerabilities.

Script generation and interactive conversation required a model
with strong natural language capabilities combined with instruction

following. Llama 3.3 70B Versatile was effective and cheap for this
purpose. It generated natural-sounding scripts and conversational
responses.
For voice synthesis, Deepgram’s Aura series offered the most

natural-sounding speech with appropriate prosody and intonation.
Its advanced neural text-to-speech technology generated voice pat-
terns that closely mimic human speech.
The use of purpose-built models for different components of an

attack pipeline has been shown in this paper to significantly enhance
effectiveness. The use of specialized models to optimize particular
aspects of the attack makes for more believable and concerning
result.

4 Challenges and Limitations
There are several challenges associated with building and testing
impersonation systems. Ethically, we must ensure that the demo

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2025.



From Context to Deception: Simulating and Detecting LLM-Driven Impersonation Attacks • 111:5

does not harm real individuals. For this reason, all personal data used
in the demo is either synthetic or comes from opt-in participants.
Two critical limitations impact the effectiveness of our defense

system: the availability of training data and the brevity of conversa-
tional AI responses.
First, when training our detection model, we observed a signif-

icant imbalance in the data set. It is relatively easy to generate
numerous AI-generated voicemails for training, but acquiring a
diverse and representative sample of genuine human voicemails
proved difficult. This imbalance between AI and human samples
can skew the model’s learning and lead to false positives. As a re-
sult, some authentic human messages may be incorrectly flagged as
AI-generated due to overfitting or lack of contrastive examples.

Second, the short and concise nature of AI-generated voice con-
versations, especially those produced during simulated scam interac-
tions, poses a challenge for detection. The limited amount of textual
content in these brief conversations reduces the effectiveness of the
detection script, which relies on linguistic patterns and complexity
to distinguish between human and AI-generated speech. Without
enough context, even well-designed classifiers may struggle to make
accurate determinations.

5 Mitigation Strategies and Discussion
We suggest several defenses:

• Social media should block scraping and limit public info.

• LLMs should include prompt filters, auditing, and water-
marks.

• Users should be taught to spot AI messages.
• Voice ID tools can verify callers.
• Rules should require clear AI disclaimers.

These steps won’t solve the problem fully. But they can reduce the
risk. Defense must evolve along with AI.

6 Conclusion
AI scams are easy to make and hard to detect. They use LLMs, fast
public info search, and text to voice tools to impersonate real people.
We built a demo of such an attack and a model to spot fake

voicemails. This shows how real the threat is, and what we can do
about it.
Better data, better models, and better education are key to pre-

venting successful scams. However, more work needs to be done in
order to build faster and smarter defenses. AI systems must include
safety tools by default.

People, companies, and governments all have a role in this scam
prevention process. Everyone must understand that deception is
now just a prompt away.

References

Received 9 May 2025

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2025.


	Abstract
	1 Introduction
	2 Methodology
	2.1 Offense
	2.2 Defense

	3 Implementation
	3.1 Frontend Implementation
	3.2 Frontend Server
	3.3 Prompt Engineering
	3.4 Model Selection

	4 Challenges and Limitations
	5 Mitigation Strategies and Discussion
	6 Conclusion
	References

