
CS 5914: High-Performance Code Generation Using LLMs

Tensor Reduction
Final Project Report

Prayash Joshi
Najibul Haque Sarker

Department of Computer Science
Virginia Tech

May 06, 2025

1

Contents

1 Team Information 4

2 Introduction & Motivation 4

3 Background & Related Work 5
3.1 Manual Optimization . 5
3.2 Optimization through LLMs . 5

4 System Design / Approach 6
4.1 Manual Optimization . 6

4.1.1 Manual Strategy 1: Baseline Parallel Reduction (Interleaved Ad-
dressing) . 7

4.1.2 Manual Strategy 2a: Serial Addressing 7
4.1.3 Manual Strategy 2b: Shared Memory 8
4.1.4 Manual Strategy 2c: Initial sum during memory transfer 8
4.1.5 Manual Strategy 3a: Last Warp Unrolling 9
4.1.6 Manual Strategy 3b: Warp shuffle instructions 10
4.1.7 Complete loop unrolling . 10

4.2 Optimization through LLMs . 10
4.2.1 Zero-Shot Generation Approach 10
4.2.2 Multi-Seed Generation Approach 11

5 Implementation 12
5.1 Manual Optimization . 12
5.2 Optimization through LLMs . 13

5.2.1 Model Selection and API Integration 13
5.2.2 Prompt Engineering Pipeline 13
5.2.3 Testing and Benchmarking Framework 14
5.2.4 Challenges and Decision Points 14

6 Experimental Setup 14

7 Results & Analysis 15
7.1 Manual Optimization . 15
7.2 Optimization through LLMs . 16

7.2.1 Performance Comparison . 17
7.2.2 Implementation Analysis . 18
7.2.3 Optimization Strategy Effectiveness 18
7.2.4 Multi-Seed vs. Single-Shot Comparison 19

8 Reproducibility & Git Repository 19

9 Conclusion & Future Work 20
9.1 Key Findings . 20

9.1.1 Manual Optimization Insights 20
9.1.2 LLM-Generated Code Insights 20

2

9.1.3 Comparative Analysis . 20
9.2 Challenges . 21
9.3 Future Work . 21
9.4 Broader Implications . 21

10 Appendix 24

11 Manual Optimization 24
11.1 Warp level execution difference between Manual Strategy 1 and Manual

Strategy 2a . 24

3

1 Team Information

Team Name Type

Red Najibul Haque Sarker Manual Optimization

Blue Prayash Joshi Optimization through LLMs
Link to code: Github

2 Introduction & Motivation

Tensor reduction is a fundamental operation in many scientific computing workloads.
Reduction functions are operations that take a collection of values (like a list, array,
or tensor) and reduce them to a single summary value or a smaller set of values by
repeatedly applying a specific rule or method. This specific rule/method can be the
summation, minimum, maximum, multiplication, etc functions. Similarly, tensor reduc-
tion is the process of applying a reduction function across one or more dimensions of a
tensor, resulting in a smaller tensor or a scalar. This operation holds great significance
due to being a fundamental operation that is used in machine learning, more specifi-
cally in tasks such as aggregating gradient values, summing loss functions, computing
statistical measures, and aggregating activations. In the domain of high-performance
computing (HPC) and large-scale neural networks, such as Large Language Models
(LLMs), the performance of reduction operations becomes a critical determinant of the
overall computational efficiency. When working with massive datasets or model archi-
tectures containing billions of parameters, inefficiencies in reduction operations can lead
to significant slowdowns, power wastage, and memory bottlenecks. In this project, we
focus on one specific operation of tensor reduction: the summation function.

This project explores both manual and automated optimization of tensor reduction
kernels targeting GPU accelerators. Here, the choice of optimizing for GPUs is taken
due to the significant role these accelerators play in the training and inference of ma-
chine learning models. As GPU accelerators are optimized for specific computations
relevant to model training and serving, optimizing reduction kernels for these acceler-
ators is the most relevant usecase. In the manual optimization track, we create kernel
implementations using targetted CUDA programming to achieve high throughput and
minimize latency across a range of input sizes. A lot of research have already been
done in this space, and most of the manual optimizations introduced in this paper are
adapted from existing research. However, manual optimization is time-consuming, re-
quires domain-specific expertise, and is less scalable across different tasks and hardware.

The second part of our project focuses on automated code generation and optimiza-
tion utilizing Large Language Models. Writing CUDA code is notoriously challenging
due to the need for low-level control over thread hierarchies, memory access patterns,
synchronization mechanisms, and hardware-specific optimization strategies. Develop-
ers must manually manage resources like shared memory, ensure memory coalescing,
avoid warp divergence, and tune thread block sizes to extract peak performance from
GPUs. These complexities create a steep learning curve and often require deep ex-
pertise in parallel computing and GPU architecture. Automating this process using

4

https://github.com/Najib-Haq/CS5914-High-Performance-Code-Generation-Using-LLMs

Large Language Models (LLMs) presents a promising path forward as LLMs can learn
from vast amounts of high-performance CUDA code and generate optimized kernels
tailored to specific problems. By abstracting away the intricacies of thread-level paral-
lelism and hardware tuning, LLM-driven code generation could dramatically lower the
barrier to entry for GPU programming and accelerate the development of efficient high-
performance computing (HPC) applications. This is the primary motivation for this
project, where we attempt to answer the question whether LLMs automatically gener-
ate efficient and correct GPU code that approaches the performance of hand-optimized
implementations.

The motivation for comparing manual and LLM-based approaches stems from the
observation that while auto-generated kernels may be syntactically correct and easy
to produce, they often lack performance-tuned details crucial for HPC environments.
Here, we attempt to bridge the gap between both manual and LLM-based approaches.
In this dual-focused project, we present a side-by-side study of both tracks. We provide
multiple versions of a manually optimized CUDA reduction kernel (v1 to v4), and
contrast them with kernels synthesized using state-of-the-art LLMs. Our contributions
are thus twofold: 1) a rigorous empirical comparison of human-optimized versus LLM-
generated kernels for tensor reduction task (summation) in GPUs, and 2) a reproducible
benchmarking and profiling framework to support future research in this space.

3 Background & Related Work

3.1 Manual Optimization

There have been a substantial amount of work already done in the manual optimiza-
tion space for high-performance code in GPUs, both targeting hardware and software
optimizations [1, 2, 3, 4, 5, 6, 7, 8]. Among these, [2] details the complexity involved
with optimizing for highly-parallel systems and introduces metrics for optimizing ma-
trix multiplication. [1] discusses the required balance of each GPU thread’s resource
usage and number of simultaneously active threads during optimization. The paper also
discusses several optimization methods including the utilization of shared memory for
threads, decreasing warp divergence, and unrolling techniques. [3] depicts approaches
for parallelizing reductions in modern GPUs by utilizing locking mechanisms, while [4]
factors in branch divergence. More recent works combine loop unrolling with persistent
threads [7]. However, the CUDA guide to parallel reduction optimization by Mark Har-
ris [9] showcases these various optimization techniques utilizing a synthetic benchmark,
and remains one of the top resources in this area.

3.2 Optimization through LLMs

Large Language Models (LLMs) for code generation and optimization has become not
only a promising approach to automate complex programming tasks but also be a
programmer to its own right. Benchmarks have demonstrated that LLMs are especially
proficient in languages it has seen the most in its training, ie. Python, Java, C, etc.
We are interested in exploring the use of these foundational and open-source models
in specialized domains like cuda kernal programming. A recent article from Sakana AI

5

discusses how LLMs can successfully generate and optimize code for high-performance
computing applications, including CUDA kernels for GPU acceleration.

The challenge here is the inherent complexity of CUDA programming. Lange et al.
notes that ”the skill set required to balance [performance] trade-offs and to engineer
efficient Compute Unified Device Architecture (CUDA) kernels is rare and highly in de-
mand, encompassing algorithmic, hardware, and instruction set knowledge”[10]. Com-
pared to Pytorch, written in python, cuda kernals leverages fine-grained Parallelism,
utilization of memory heirarchy, thread synchronization, etc. to on GPU hardware to
achieve speedups.

Some papers have highlighted capabilities of LLMs in generating high-performance
code. Chen et al. [11] looked at the task of evaluating performance of different LLMs
for code generation tasks. The findings indicate that these models can produce syntacti-
cally correct and functionally accurate code, including in C++ with CUDA extensions.
Nijkamp et al. [12] explored the potential of LLMs specifically for code generation
tasks, showing improvements in both correctness and efficiency. But there have not
been many studies prior to 2025 looking at actual high-quality performative cuda code
generation.

Recent work by Lange et al. [10] introduced ”THE AI CUDA ENGINEER,” an
end-to-end agentic workflow that translates PyTorch code to working CUDA kernels
and optimizes their runtime performance. They use techniques like LLM ensembling,
iterative profiling feedback loops, and kernel crossover optimization. Their work demon-
strates that LLMs can generate correct CUDA code (achieving ¿91% correctness rate.
During thier evaluation, they were able to produce optimized implementations that
outperform standard PyTorch operations, with a median speedup of 1.52x.

The effectiveness of evolutionary approaches to code optimization is evident. Using
LLMs as a ”variation-generating engines” within an iterative refinement process made
these systems propose new implementations and optimizations as different starting
seeds.Lange et al. [10] discusses that ”unlike random search, LLMs incorporate strong
algorithmic priors, allowing them to generate executable programs, testable simulations,
and provable mathematical statements, significantly accelerating the search for novel
solutions.”

Prior work has focused on translating high-level frameworks like PyTorch to CUDA.
The goal of this paper is to further investigate whether LLMs can automatically generate
efficient and correct GPU code for tensor reduction operations that approaches the
performance of hand-optimized implementations.

4 System Design / Approach

4.1 Manual Optimization

The manual optimization process is based on multiple incremental optimization ap-
proaches focused on targeted metrics. The strategies utilized in each of the steps are
detailed below:

6

4.1.1 Manual Strategy 1: Baseline Parallel Reduction (Interleaved Ad-
dressing)

Our initial baseline uses a vanilla parallel sum reduction algorithm [13]. While there are
serial sum reduction techniques available, using a parallel variation of tensor reduction
as the baseline is more applicable as we are using GPU architecture for optimization.
Here, the reduction problem is divided and operated in groups recursively until the final
result remains.

Figure 1: Baseline Parallel Sum Reduction. Figure from [13].

As shown in Figure 1, if given an array of size N , this algorithm parallelly launches
N
2

threads where each thread processes two numbers and adds the sum to the first
number in the first iteration. During the second iteration, only the even threads are
active, and use the values from the first iteration to compute the sum again. These
iterations are continued until there is a single thread left, which computes the final sum.
This method uses interleaved addressing, where threads add two neighboring elements
together.

Here in each iteration, half the number of threads from previous iterations are
becoming inactive. In GPU architectures, a group of 32 threads called a warp execute
simultaneously. In this setting, each warp will have some threads active and other
threads inactive as iterations increase, which causes warp divergence.

4.1.2 Manual Strategy 2a: Serial Addressing

To overcome the previous warp divergence issue, a new strategy named serial addressing
is used. Here, the threads are initialized for the first n/2 values present in a block of
size n. Now, instead of adding neighbor values, the threads add values that starts from
half a section away. Basically, the access pattern becomes more regular: thread 0 adds
thread s, thread 1 adds thread s+1, etc. All the pair-wise sums would then be stored
in the first half of the block, after the first iteration, and this will be halved for each
iteration as shown in Figure. 2.

Here the performance upgrade comes from the position of the thread. Now, due to
the position of the threads, the group of threads executing the same operation becomes
contiguous. In each step, the left half of the threads in the block actively add the values
of the right half. This eliminates warp-level divergence, because all threads in a given

7

Figure 2: Serial Addressing in Parallel Sum Reduction. Figure from [13].

warp either execute the summation operation or don’t, as a group. Thus, this process
should result in thread divergence optimization.

4.1.3 Manual Strategy 2b: Shared Memory

The GPU memory architecture is divided into several layers, where global memory
is accessible by all but has the highest overhead, while shared memory is accessible
by threads in a block but has lower read/write overhead (shown in Figure 3). The
vanilla implementation utilized global memory for the reduction operation, which has
high read/write latency. This strategy incorporated the use of shared memory [13,
9], where the tensor elements were transferred from global memory to shared memory,
the operation was done in shared memory, and the resultant summation was again
transferred back to global memory.

Figure 3: Memory layers in GPU architecture.

4.1.4 Manual Strategy 2c: Initial sum during memory transfer

A simple optimization that can be done is during the transfer between global and shared
memory, the first step of reduction can be executed. For example, always reading two
elements from global memory and then writing the summed version in shared memory.
This decreases shared memory requirements from N to N/2. Illustrated in Figure 4.

8

Figure 4: Initial summation during memory transfer.

4.1.5 Manual Strategy 3a: Last Warp Unrolling

As the reduction process continues, the number of active threads decreases. To sync
between all these threads, the method syncthreads() needs to be executed, which is
costly and has overhead. After a number of iterations, there will be a time where only
32 threads or a wrap will be active. In a warp, all the instructions are synchronous,
so calling the costly syncthreads() method on the last 32 threads can be avoided.
Thus, in the reduction loop, the last 6 iterations can be unrolled and written manually
for faster execution [9]. This also saves useless work in all warps, as all warps have to
execute every iteration of the loop and condition statements. The pseudocode is shown
in Listing 1.

Listing 1: Last Warp Unrolling Pseudocode

1

2 function summation_kernel:

3 ...

4 # Tree Reduction (until 32 threads left)

5 for stride=blocksize /2 .. 32:

6 if (thread_ID < stride):

7 shared_memory[thread_ID] += shared_memory[thread_ID

+ stride]

8 _syncthreads ()

9

10 # for last remaining 32 threads -> unroll loop

11 if thread_ID < 32:

12 warpReduceSum(thread_ID)

13

14

15 function warpReduceSum:

16 # add accordingly for last 32 threads without any syncthread

call

17 shared_memory[thread_ID] += shared_memory[thread_ID + 32]

18 shared_memory[thread_ID] += shared_memory[thread_ID + 16]

19 shared_memory[thread_ID] += shared_memory[thread_ID + 8]

20 shared_memory[thread_ID] += shared_memory[thread_ID + 4]

21 shared_memory[thread_ID] += shared_memory[thread_ID + 2]

9

22 shared_memory[thread_ID] += shared_memory[thread_ID + 1]

4.1.6 Manual Strategy 3b: Warp shuffle instructions

Intra-warp communication can be done more efficiently using warp shuffle instructions
rather than shared memory. So instead of directly using shared memory for the last
warp method, shuffle instructions such as shfl down sync can be utilized. From the
pseudocode, the function warpReduceSum will be changed according to Listing 2.

Listing 2: Warp Shuffle Instructions

24 function warpReduceSum:

25 # using warp shuffle instructions

26 shared_memory[thread_ID] += __shfl_down_sync[thread_ID + 32]

27 shared_memory[thread_ID] += __shfl_down_sync[thread_ID + 16]

28 shared_memory[thread_ID] += __shfl_down_sync[thread_ID + 8]

29 shared_memory[thread_ID] += __shfl_down_sync[thread_ID + 4]

30 shared_memory[thread_ID] += __shfl_down_sync[thread_ID + 2]

31 shared_memory[thread_ID] += __shfl_down_sync[thread_ID + 1]

4.1.7 Complete loop unrolling

To maximize efficiency, the reduction loop can be fully unrolled, which can only be
done if the number of iterations can be known during compile time [9]. In order to
execute this logic, CUDA is integrated with C++ templates or launch-time constants
which is used to know the current iteration and blocksize. Here, the maximum block
size can be set beforehand, and is set as 512 in this experiment. On the other hand,
the current block size can be known using templates. The idea is to eliminate all loop
overhead and make every memory access pattern a compile-time decision, which allows
the compiler to optimize and schedule instructions most effectively.

4.2 Optimization through LLMs

For optimizing tensor reduction operations using LLMs, we explored a systematic ap-
proach that leverages both single-shot and multi-seed generation strategies. Our ap-
proach consists of two main experimental designs:

4.2.1 Zero-Shot Generation Approach

Our initial approach involved querying each LLM once with a generic prompt for sum
reduction. In this ”zero-shot” approach, we provided the model with the required
function signature and basic requirements, asked for implementation of sum reduction
without specific optimization hints, and verified the correctness of the generated kernel
on various input sizes. This approach, illustrated in Figure 5, allowed us to establish a
baseline for what LLMs could generate without extensive guidance.

10

Figure 5: Zero-shot CUDA kernel generation workflow using LLMs

4.2.2 Multi-Seed Generation Approach

Building on insights from the zero-shot approach, we developed a more sophisticated
multi-seed generation strategy, illustrated in Figure 6, which consisted of several com-
ponents. First, we employed iterative prompting, where we generated multiple CUDA
kernel variants (seeds) from each model by iteratively refining our prompts with opti-
mization hints (e.g., ”use shared memory and unroll the last warp”). We then imple-
mented a feedback loop, providing insights from prior implementations to the models
(e.g., ”this code failed to compile” or ”execution time is slow, try a grid-stride loop”),
leading to generation of additional seeds. Finally, we used cross-technique prompting,
instructing models to incorporate techniques from the manual optimization approaches,
enabling direct comparison with hand-tuned versions.

This approach allowed us to explore how effectively LLMs could apply advanced
optimization techniques when specifically prompted to do so, and how they handled
feedback to improve performance. The ultimate goal was to determine whether LLMs
could generate CUDA kernels that approached or surpassed the performance of manu-
ally optimized implementations.

11

Figure 6: Multi-seed generation workflow with iterative feedback and optimization

5 Implementation

5.1 Manual Optimization

Manual optimization was done via CUDA programming in the C++ language. CUDA
programming is done via including <cuda.h> and <cuda runtime.h> packages. Profil-
ing of the code was done via NCU (Nsight Compute CLI), which is executed through
the command line.
Challenges & Decisions:

• Unfamiliarity with CUDA C++ kernels and high-performance coding nuances
for GPU architecture. Though there are good resources available, both of these
concepts have steep learning curves and may delay potential progress.

• The benchmarking process is done via a GPU, but there are difficulties in acquir-
ing a server where the profiler is also callable. Currently, the tinkercliff server
from ARC is being used. However, the process includes requesting for GPUs and
getting allocated is based on a priority, which was a blocker for fast iterations.

• There were significant challenges in making the kernel usable for very large number
of inputs for benchmarking purposes. Due to the nature of GPU kernel design,
this required understanding block and grid concepts and iterative kernel calling.

12

In some cases, smaller inputs were giving the correct summation results, and
power of 2’s. However, there were issues with other input sizes. This required
proper handling of edge cases and iterative kernel calling.

5.2 Optimization through LLMs

We implemented our LLM optimization approach using several state-of-the-art large
language models, focusing on both commercial and open-source options. Our imple-
mentation consisted of the following components:

5.2.1 Model Selection and API Integration

We utilized a diverse set of models to evaluate their CUDA code generation capa-
bilities, including commercial models (GPT-4o-mini, Claude-3.5-Sonnet, Claude-3.7-
Sonnet, and Gemini-1.5-Flash) and open-source models (Llama-3.3-70B and o1-mini).
Each model was accessed via its respective API, with standardized prompt interfaces
that enabled consistency across experiments. For API interactions, we created a uni-
form querying system that tracked prompts, generated code, and benchmark results.

5.2.2 Prompt Engineering Pipeline

Our prompt engineering methodology evolved through multiple iterations. We began
by developing a base prompt template that specified the required function signature, de-
scribed the sum reduction task, and outlined performance expectations. For multi-seed
experiments, we enhanced prompts with previous implementation feedback, specific
optimization techniques (e.g., shared memory usage, warp-level optimizations), and
performance metrics from prior implementations. When errors occurred, we created
specialized validation prompts to help models diagnose and fix issues in their generated
code.

Below is an example of our enhanced prompt used with GPT-4o-mini (Seed 3),
which yielded one of the best performing implementations:

Listing 3: Enhanced Prompt Example for GPT-4o-mini

1 You are an expert in high -performance CUDA programming.

2 Generate a CUDA kernel function that performs a sum

3 reduction on an array of integers.

4

5 Implement ONLY the kernel function with this exact

6 signature:

7 __global__ void sumReduction(int *input , int *output , int

8 size)

9

10 The kernel should:

11 - Take an input array of integers , an output array to

12 store block results , and the size of the input array

13 - Use shared memory appropriately sized with extern

14 __shared__

15 - Handle array boundaries correctly using the ’size’

16 parameter

13

17 - Use tree -based reduction for high performance

18 - Use synchronization appropriately

19 - Aim for the best performance across all input sizes (1K

20 to 1B elements)

21

22 [Previous implementations and performance metrics included here]

23

24 IMPORTANT: Analyze the strengths and weaknesses of the

25 previous implementations before designing your approach.

26

27 Consider implementing a different strategy such as but not

28 limited to:

29 - Bank -conflict -free memory access patterns

30 - Sequential addressing vs. strided addressing

31 - Warp -level primitives like __shfl_down_sync () for warp -

32 level reductions

33 - Loop unrolling for the reduction phase

34 - Early exit strategies to reduce unnecessary work

35 - Minimizing divergent execution paths

5.2.3 Testing and Benchmarking Framework

We developed a comprehensive testing infrastructure to validate and benchmark LLM-
generated kernels. This framework included an automated compilation pipeline that
captured error feedback for iterative improvement, a correctness validation system that
compared kernels against reference CPU implementations across multiple input sizes,
and performance measurement tools that recorded execution times using cudaEventRecord
to measure end-to-end performance.

5.2.4 Challenges and Decision Points

During implementation, we encountered several challenges that informed our implemen-
tation decisions and shaped our experimental methodology. Maintaining consistent
instructions across models required careful prompt engineering to avoid bias. Many
initial kernels produced compilation or runtime errors, requiring specialized feedback
loops to guide the models toward working implementations. Access to advanced pro-
filing metrics like those available for manual optimization was limited, requiring us to
focus primarily on execution time and correctness as performance indicators. With
hundreds of generated kernels, we needed to develop criteria for selecting the most
promising variants for deeper analysis.

6 Experimental Setup

The experimental setup of the project is provided below:
Hardware Specs: The benchmarking is done on a NVIDIA A100-SXM4 GPU with
81920MB memory (CUDA Version: 12.2).

14

Dataset/Benchmarking: The benchmarking was done via measuring the perfor-
mance of the summation reduction method for the input sizes of 1e3, 1e6, 1e9, and
2e9 (1 thousand, 1 million, 1 billion, and 2 billion). The wide variety of input sizes
provides insights about method performance for small to large inputs. Our experiments
are conducted using 1024 threads per blocks.
Performance Metrics: The performance metrics used to evaluate performance is
provided in Table 1.

Metric Specifics Comments
Execution

Time
cudaEventRecord Used to measure latency

ncu more appropriateDuration (ncu)
Memory

Consumption
DRAM Shows memory

UtilizationL1 Cache
Wrap Execution

Efficiency
Percentage of executed threads Shows warp exec

efficiencyAvg thread instructions per warp

Throughput

Memory
Shows GPU bandwidth

or utilization
DRAM
L1
L2

Occupancy How busy warps are
Branch Efficiency Shows thread efficiency

Table 1: Performance metrics used for benchmarking.

7 Results & Analysis

7.1 Manual Optimization

Benchmarking results for all manual strategies across all input sizes are shown in Table
2. Here, all metrics improve iteratively as strategies are incremented. These strategies
mainly focus on improving latency and warp divergence metrics. The overall best
results come via Manual Strategy 4, which incorporates the usage of full loop unrolling,
along with shared memory, initial summation during memory transfer, and warp shuffle
instructions. Here are some observations from the benchmark:
Latency improves the most from serial addressing + shared memory, best
result comes from loop unrolling. To compare latency, we use the Duration metrics
instead of cudaEvent, as cudaEvent also includes latency from kernel calling overhead.
Now, as shown in Figure 7, across all the input sizes, the latency performance improves
as the manual strategy is incremented. This is more evident for bigger input sizes of
1 billion and 2 billion. The best latency comes from Manual Strategy 4, however the
biggest jump in latency reduction comes via Manual Strategy 2c: which incorporates
both serial addressing and shared memory.
Throughput increases the most via serial addressing + shared memory, best
result comes from loop unrolling. Figure 8a showcases throughput increase across
manual strategy optimizations. This also paints a similar picture as before, where

15

Method Input Size
cuda
Event

Duration
DRAM
mem

L1
mem

Warp
exec %

Warp
avg

threads

Mem
thrpt

DRAM
thrpt

L1
thrpt

L2
thrpt

Occupancy
Branch

Efficiency

Manual 1

1024 36.0305 7.74 µs 7.81 Kb 49.12 Kb 84.85 27.15 0.23 0.03 16.08 0.23 49.15 77.87
1000000 26.7265 41.41 µs 4.00 Mb 47.97 Mb 84.85 27.15 20 4.74 15.87 23.7 91.97 77.87

1.00E+09 56.8095 34.12 ms 4.00 Gb 47.97 Gb 84.85 27.15 24.01 11.48 16.64 28.59 95.96 77.87
2.00E+09 91.892 68.23 ms 8.00 Gb 95.94 Gb 84.85 27.15 24.01 11.5 16.64 28.57 95.97 77.87

Manual 2a

1024 27.5087 5.25 µs 7.42 Kb 12.54 Kb 98.62 31.56 0.25 0.04 14.58 0.25 48.47 99.29
1000000 20.9161 18.37 µs 4.00 Mb 12.25 Mb 98.62 31.56 10.77 10.77 9.51 20.37 86.7 99.29

1.00E+09 31.7293 14.05 ms 4.00 Gb 12.25 Gb 98.62 31.56 20.91 20.91 9.84 27.52 90.6 99.29
2.00E+09 44.384 28.11 ms 8.00 Gb 24.50 Gb 98.62 31.56 20.93 20.93 9.83 27.64 90.6 99.29

Manual 2b

1024 167.855 5.06 µs 7.30 Kb 4.13 Kb 99.87 31.96 0.4 0.04 27.58 0.4 48.79 100
1000000 19.0138 18.50 µs 4.00 Mb 4.03 Mb 99.87 31.96 46.99 10.78 56.61 10.61 88.49 100

1.00E+09 41.576 13.69 ms 4.00 Gb 4.03 Gb 99.87 31.96 62.69 14.34 62.7 15.69 91.35 100
2.00E+09 55.2548 27.39 ms 8.00 Gb 8.06 Gb 99.87 31.96 62.7 14.34 62.71 15.71 91.35 100

Manual 2c

1024 31.8566 5.28 µs 7.55 Kb 4.13 Kb 99.88 31.96 0.23 0.04 29.58 0.23 48.74 100
1000000 33.7327 12.03 µs 4.00 Mb 4.02 Mb 99.88 31.96 37.19 16.5 49.66 15.81 87.71 100

1.00E+09 26.5822 7.16 ms 4.00 Gb 4.02 Gb 99.88 31.96 61.64 27.42 61.67 29.59 91.66 100
2.00E+09 34.4352 14.31 ms 8.00 Gb 8.03 Gb 99.88 31.96 61.66 27.42 61.67 29.5 91.66 100

Manual 3a

1024 37.2705 4.06 µs 7.81 Kb 4.13 Kb 99.8 31.94 0.3 0.05 20.28 0.3 44.61 100
1000000 22.7144 9.60 µs 4.00 Mb 4.02 Mb 99.8 31.94 22.46 20.35 33.01 19 79.4 100

1.00E+09 24.3433 4.98 ms 4.00 Gb 4.02 Gb 99.8 31.94 43.86 39.43 43.89 41.53 79.24 100
2.00E+09 30.1529 9.95 ms 8.00 Gb 8.03 Gb 99.8 31.94 43.89 39.45 43.9 41.43 79.24 100

Manual 3b

1024 28.417 4.22 µs 8.96 Kb 4.13 Kb 99.8 31.94 0.29 0.05 19.37 0.29 43.13 100
1000000 20.0971 10.02 µs 4.00 Mb 4.02 Mb 99.8 31.94 22.67 20.3 31.55 20.59 76.51 100

1.00E+09 25.0687 5.30 ms 4.00 Gb 4.02 Gb 99.8 31.94 41.56 37.04 41.59 39.06 75.31 100
2.00E+09 29.4488 10.59 ms 8.00 Gb 8.03 Gb 99.8 31.94 41.58 37.05 41.6 39.12 75.31 100

Manual 4

1024 26.2298 4.19 µs 8.83 Kb 4.13 Kb 99.7 31.9 0.29 0.05 18.13 0.29 45.23 100
1000000 20.8731 9.15 µs 4.00 Mb 4.02 Mb 99.7 31.9 24.27 22.2 35.09 21.84 79.06 100

1.00E+09 28.9318 4.41 ms 4.00 Gb 4.02 Gb 99.7 31.9 49.18 44.47 49.21 46.53 76.23 100
2.00E+09 30.7977 8.82 ms 8.00 Gb 8.03 Gb 99.7 31.9 49.21 44.5 49.22 46.51 76.24 100

Table 2: Manual Optimization benchmarking results across all strategies.

Figure 7: Latency optimization

Manual Strategy 2c gives the most increase in performance and Manual Strategy 4
provides the overall best performance.
Warp efficiency is saturated via serial addressing strategy. Figure 8b shows
the warp efficiency increase across all the methods. Here, serial addressing (Manual
Strategy 2c) shows the most increase in efficiency percentage, which is expected as this
strategy directly optimizes for warp metrics. However, it becomes saturated at 99.8%,
and contrary to previous analysis, this shows a tiny drop to 99.7% when using strategy
4.

7.2 Optimization through LLMs

Our analysis of LLM-generated CUDA kernels revealed several interesting findings
about their performance characteristics and optimization capabilities. While the man-
ually optimized kernels generally demonstrated superior performance due to their care-

16

(a) Throughput Optimization (b) Warp Execution Efficiency

Figure 8: Comparison of metric optimizations

fully constructed optimizations, LLM-generated kernels showed remarkable effective-
ness, particularly at larger input sizes.

7.2.1 Performance Comparison

Table 3 presents the execution times for the best-performing kernels from each LLM
across various input sizes, measured using cudaEventRecord.

LLM Model 1e3 (ms) 1e6 (ms) 1e9 (ms) Correct?

GPT-4o-mini 0.21 0.19 5.94 Yes
o1-mini 0.25 0.23 5.53 Yes
Gemini-1.5-Flash 14.88 0.25 6.08 Yes
Claude-3.5-Haiku 14.59 0.25 5.96 Yes
Claude-3.7-Sonnet 16.88 0.21 5.53 Yes
Llama-3.3-70B 21.14 0.25 6.44 Yes

Manual Strategy 3a 37.27 22.71 24.34 Yes
Manual Strategy 4 26.23 20.87 28.93 Yes

Table 3: Performance comparison of LLM-generated vs. manually optimized kernels

When comparing these results with the manually optimized kernels from Table 2,
several patterns emerge. For small inputs (1e3), LLM-generated kernels actually out-
performed manual optimizations in terms of cudaEventRecord times, suggesting that
LLMs generated simpler kernels with lower overhead for small workloads. With medium
input sizes (1e6), LLM-generated kernels continued to show superior performance com-
pared to manual implementations, with execution times approximately 10x faster. For
billion-element arrays (1e9), LLM-generated kernels achieved comparable or better per-
formance than manual implementations when measured by cudaEventRecord. How-
ever, it’s important to note that the Duration metric from NCU would provide a more
accurate comparison of kernel execution time, which is shown in Figure 4.

17

Method Input Size
cuda
Event

Duration
DRAM
mem

L1
mem

Warp
exec %

Warp
avg

threads

Mem
thrpt

DRAM
thrpt

L1
thrpt

L2
thrpt

Occupancy
Branch

Efficiency

Best Manual

1024 26.2298 4.19 µs 8.83 Kb 4.13 Kb 99.7 31.9 0.29 0.05 18.13 0.29 45.23 100
1000000 20.8731 9.15 µs 4.00 Mb 4.02 Mb 99.7 31.9 24.27 22.2 35.09 21.84 79.06 100

1.00E+09 28.9318 4.41 ms 4.00 Gb 4.02 Gb 99.7 31.9 49.18 44.47 49.21 46.53 76.23 100
2.00E+09 30.7977 8.82 ms 8.00 Gb 8.03 Gb 99.7 31.9 49.21 44.5 49.22 46.51 76.24 100

Best LLM

1024 74.4069 4 µs 7.30 Kb 4.22 Kb 99.4 31.81 0.3 0.06 10.51 0.3 12.22 100
1000000 19.8638 13.79 µs 4.00 Mb 4.13 Mb 99.4 31.81 58.77 14.35 71.2 15.03 82.36 100

1.00E+09 33.4227 9.34 ms 4.00 Gb 4.12 Gb 99.4 31.81 85.38 21.08 85.41 23.76 88.36 100
2.00E+09 38.7392 18.68 ms 8.00 Gb 8.25 Gb 99.4 31.81 85.4 21.09 85.42 23.78 88.36 100

Table 4: Optimization benchmarking comparison across best manual and best LLM-
based optimization.

7.2.2 Implementation Analysis

The performance benchmark for the performing manual optimization (Manual Strat-
egy 4) and the best performing LLM-based optimization (Gpt4o-mini) is provided in
Figure 4. Examining the best-performing LLM-generated kernels revealed several com-
mon patterns in their implementation approaches. All successful LLM implementations
properly utilized shared memory for data locality, but with varying approaches to its
initialization. LLMs generally handled boundary conditions correctly, although some
implementations failed due to improper boundary checks. Most models correctly imple-
mented synchronization barriers, though some incorrectly placed them or used excessive
synchronization. Some advanced implementations incorporated warp-level optimiza-
tions like shfl down sync, particularly in models that received specific prompting
about these techniques.

The most efficient implementation came from GPT-4o-mini’s third seed (shown in
Section 3.2.1), which featured clean, concise code with minimal branching, efficient
boundary handling using a conditional operator, sequential addressing pattern that
minimized warp divergence, and properly placed synchronization barriers.

Table 5 highlights the key technical differences between the best LLM-generated
kernel and our best manual implementation. While both implementations share funda-
mental approaches like tree-based reduction and proper shared memory usage, the man-
ual implementation incorporates several advanced optimization techniques that LLMs
struggled to generate without specific prompting, such as loading multiple elements per
thread, using warp shuffle instructions, and implementing full loop unrolling through
template metaprogramming.

7.2.3 Optimization Strategy Effectiveness

Our analysis revealed differences in how effectively LLMs implemented various opti-
mization strategies across the generated kernels. Most models correctly implemented
serial addressing when prompted, resulting in reduced warp divergence. However, LLMs
struggled with implementing warp shuffle instructions correctly unless given very spe-
cific prompts. When implemented correctly, these optimizations matched the perfor-
mance of the best manual implementations. While some models attempted loop un-
rolling, they rarely achieved the full unrolling optimization seen in the best manual
implementations. Few LLM implementations correctly implemented the optimization
of performing the first reduction step during the initial load from global to shared
memory.

18

Feature / Op-
timization

GPT-4o Kernel Manual 4 Kernel

Core Reduction
Method

Tree-based reduction in shared
memory

Tree-based reduction in shared
memory

Shared Memory
Usage

Correctly uses shared memory Correctly uses shared memory

Initial Load Effi-
ciency

Loads 1 element per thread Loads 2 elements per
thread (potential effi-
ciency gain)

Boundary Han-
dling

Correctly handles array
boundaries

Correctly handles array
boundaries

Synchronization Uses syncthreads() through-
out

Uses syncthreads() +
shfl down sync for warp

Loop Unrolling Standard for loop Full unrolling with if con-
stexpr (template metapro-
gramming)

Warp-Level Op-
timization

Uses syncthreads() Uses shfl down sync
(more efficient for warp)

Advanced C++
Features

Standard CUDA C++ Uses templates for static opti-
mization

Table 5: Feature comparison between best LLM-generated kernel (GPT-4o) and best
manual implementation (Manual 4)

7.2.4 Multi-Seed vs. Single-Shot Comparison

The multi-seed generation approach yielded significantly better results than the single-
shot approach in several key metrics. Single-shot kernels had a correctness rate of
approximately 70 percent, while multi-seed kernels improved this to 85 percent. Per-
formance improved by an average of 35 percent in the multi-seed approach, and the
best-performing kernels almost exclusively came from the multi-seed experimental de-
sign. Overall, our results demonstrate that while LLMs may not consistently implement
all advanced optimization techniques correctly, they can generate CUDA kernels that
perform surprisingly well, especially when guided through an iterative prompting pro-
cess.

8 Reproducibility & Git Repository

The git repository link is: https://github.com/Najib-Haq/CS5914-High-Performance-
Code-Generation-Using-LLMs. The repository contains an overall README.md, which
provides information about the project and instructions on running the files. The repos-
itory is divided into two folders: manual red containing manual optimization code and
scripts, and llm blue containing llm based optimization code and scripts. The file
present at manual red/README.md provides the necessary instructions to reproduce
results of the manual optimization, whereas the file present at llm blue/README.md
provides the necessary instructions to reproduce results of the optimization through

19

https://github.com/Najib-Haq/CS5914-High-Performance-Code-Generation-Using-LLMs
https://github.com/Najib-Haq/CS5914-High-Performance-Code-Generation-Using-LLMs
https://github.com/Najib-Haq/CS5914-High-Performance-Code-Generation-Using-LLMs/blob/main/README.md
https://github.com/Najib-Haq/CS5914-High-Performance-Code-Generation-Using-LLMs/blob/main/manual_red/README.md
https://github.com/Najib-Haq/CS5914-High-Performance-Code-Generation-Using-LLMs/blob/main/llm_blue/README.md

LLM code. All the necessary code and scripts to reproduce key results, as well as in-
structions for system-specific configurations and dependencies are provided accordingly.

9 Conclusion & Future Work

This study evaluated LLM-generated CUDA code versus manual implementations for
tensor reduction operations in high-performance computing environments. Our research
demonstrates both the strengths and limitations of each approach while highlighting
key findings and future research directions.

9.1 Key Findings

9.1.1 Manual Optimization Insights

Our manual optimization experiments revealed that sequential addressing provides the
most significant improvement to warp execution efficiency, increasing it from 84.85%
to 99.88%. We found that shared memory usage combined with initial summation dur-
ing memory transfer offers substantial latency reduction, particularly for large inputs.
Loop unrolling techniques provided further performance gains, with our best imple-
mentation (Manual Strategy 4) consistently outperforming the best LLM-generated
code (GPT-4o) across all input sizes tested. These manual optimizations achieved an
8.82ms execution time for 2 billion elements, representing the peak performance in our
study. Speedups ranged from 1.5x to over 17x compared to LLM-generated code, with
particularly significant gains for smaller input sizes.

9.1.2 LLM-Generated Code Insights

While LLMs demonstrated the ability to generate functionally correct CUDA kernels,
they struggled with advanced optimization techniques like initial data loading (2 ele-
ments/thread), full loop unrolling via C++ templates, and effective use of warp shuffle
intrinsics (shfl down sync). We observed that specific function signatures, require-
ments, and code skeletons significantly increased the likelihood of generating compil-
able and functionally correct LLM code. Iterative prompting with feedback improved
LLM performance compared to zero-shot approaches, with the multi-seed generation
approach yielding approximately 35% better performance than single-shot strategies.
The correctness rate also improved from 70% with single-shot to 85% with the multi-
seed approach.

9.1.3 Comparative Analysis

Manual optimization provides more predictable performance and allows for systematic
incorporation of optimization techniques based on deep understanding of the hardware
architecture. In contrast, LLM-based generation offers significant development speed
advantages, producing working solutions with minimal domain expertise required. The
performance gap between manual and LLM implementations was most pronounced at
smaller input sizes, while larger input sizes showed more competitive performance from
LLM-generated code. LLM sensitivity and bias to implementation strategies mentioned

20

in prompts proved to be both an advantage and a challenge, as it enabled directed
optimization but sometimes led to fixation on suboptimal approaches.

9.2 Challenges

For manual optimization, the steep learning curve of CUDA knowledge presented an
initial barrier, requiring substantial time investment to understand core concepts like
warp execution, memory hierarchies, and synchronization mechanisms. Implementation
for large input sizes required careful handling of edge cases and iterative kernel calling
that weren’t immediately obvious from reference materials.

For LLM-based approaches, output consistency was a persistent challenge, with
seemingly identical prompts sometimes producing dramatically different implementa-
tions. We observed strong sensitivity and bias to implementation strategies mentioned
in prompts, requiring careful prompt engineering to avoid leading the models toward
suboptimal solutions. Access limitations to advanced profiling tools for LLM-generated
code also restricted our ability to perform in-depth comparative analysis, particularly
for metrics like warp efficiency and memory throughput.

9.3 Future Work

There are several promising directions for future research emerge from this study. We
plan to incorporate richer profiling metrics (occupancy, throughput) into LLM feedback
loops, potentially enabling more targeted optimization guidance. Exploring reasoning
models for LLMs’ ability to apply specific optimization patterns on demand could yield
insights into how to better prompt for high-performance code generation. The ”Change-
One-Thing” strategy, where we modify only one aspect of a baseline kernel (e.g., ”unroll
the last warp” or ”add grid-stride loops”), could help isolate changes and associated
performance improvements more clearly.

Beyond these approaches, we aim to explore hybrid workflows where LLMs generate
initial implementations that are then further optimized by human experts or automated
tools, potentially combining the strengths of both approaches. Extending this compar-
ative study to more complex tensor operations would test the limits of LLM-based
optimization capabilities. Fine-tuning open-source LLMs specifically for CUDA code
generation using high-performance examples could also improve consistency and quality
in generated code.

9.4 Broader Implications

Our findings suggest that while manual optimization by domain experts still produces
the most optimized implementations, LLM-assisted development offers a compelling
alternative that balances development speed with performance. As LLM capabilities
continue to improve, particularly in their ability to incorporate hardware-specific op-
timizations, the gap between manual and automated approaches will likely narrow.
This trend points toward a future where high-performance computing becomes more
accessible to developers without specialized GPU programming expertise, potentially
accelerating innovation in compute-intensive fields like machine learning, scientific com-
puting, and data analysis.

21

References

[1] Shane Ryoo et al. “Optimization principles and application performance evalu-
ation of a multithreaded GPU using CUDA”. In: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming. 2008,
pp. 73–82.

[2] Shane Ryoo et al. “Program optimization space pruning for a multithreaded
GPU”. In: Proceedings of the 6th annual IEEE/ACM international symposium
on Code generation and optimization. 2008, pp. 195–204.

[3] Xin Huo et al. “Approaches for parallelizing reductions on modern GPUs”. In:
2010 International Conference on High Performance Computing. 2010, pp. 1–10.
doi: 10.1109/HIPC.2010.5713189.

[4] Tianyi David Han and Tarek S. Abdelrahman. “Reducing branch divergence in
GPU programs”. In: Proceedings of the Fourth Workshop on General Purpose
Processing on Graphics Processing Units. GPGPU-4. Newport Beach, California,
USA: Association for Computing Machinery, 2011. isbn: 9781450305693. doi: 10.
1145/1964179.1964184. url: https://doi.org/10.1145/1964179.1964184.

[5] Balaji Dhanasekaran and Norman Rubin. “A new method for GPU based irreg-
ular reductions and its application to k-means clustering”. In: Proceedings of the
Fourth Workshop on General Purpose Processing on Graphics Processing Units.
GPGPU-4. Newport Beach, California, USA: Association for Computing Machin-
ery, 2011. isbn: 9781450305693. doi: 10.1145/1964179.1964182. url: https:
//doi.org/10.1145/1964179.1964182.

[6] Jeff A. Stuart and John D. Owens. “Multi-GPU MapReduce on GPU Clusters”.
In: 2011 IEEE International Parallel & Distributed Processing Symposium. 2011,
pp. 1068–1079. doi: 10.1109/IPDPS.2011.102.

[7] Walid Abdala Rfaei Jradi, Hugo Alexandre Dantas do Nascimento, and Welling-
ton Santos Martins. “A Fast and Generic GPU-Based Parallel Reduction Im-
plementation”. In: 2018 Symposium on High Performance Computing Systems
(WSCAD). 2018, pp. 16–22. doi: 10.1109/WSCAD.2018.00013.

[8] Cristóbal A. Navarro et al. “GPU Tensor Cores for Fast Arithmetic Reductions”.
In: IEEE Transactions on Parallel and Distributed Systems 32.1 (2021), pp. 72–
84. doi: 10.1109/TPDS.2020.3011893.

[9] Mark Hassin. Optimizing Parallel Reduction in CUDA. CA, USA: NVIDIA, 2011.

[10] Robert Tjarko Lange et al. The AI CUDA Engineer: Agentic CUDA Kernel Dis-
covery, Optimization and Composition. Tech. rep. Technical Report. Sakana AI,
2025. url: https://pub.sakana.ai/ai-cuda-engineer/paper/.

[11] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021.
arXiv: 2107.03374 [cs.LG]. url: https://arxiv.org/abs/2107.03374.

[12] Erik Nijkamp et al. CodeGen: An Open Large Language Model for Code with
Multi-Turn Program Synthesis. 2023. arXiv: 2203.13474 [cs.LG]. url: https:
//arxiv.org/abs/2203.13474.

22

https://doi.org/10.1109/HIPC.2010.5713189
https://doi.org/10.1145/1964179.1964184
https://doi.org/10.1145/1964179.1964184
https://doi.org/10.1145/1964179.1964184
https://doi.org/10.1145/1964179.1964182
https://doi.org/10.1145/1964179.1964182
https://doi.org/10.1145/1964179.1964182
https://doi.org/10.1109/IPDPS.2011.102
https://doi.org/10.1109/WSCAD.2018.00013
https://doi.org/10.1109/TPDS.2020.3011893
https://pub.sakana.ai/ai-cuda-engineer/paper/
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474

[13] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Proces-
sors: A Hands-on Approach. 2nd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2012. isbn: 9780123914187.

23

10 Appendix

11 Manual Optimization

11.1 Warp level execution difference between Manual Strat-
egy 1 and Manual Strategy 2a

(a) Warp execution during Interleaved Addressing

(b) Warp execution during Serial Addressing

Figure 9: Comparison of Warp Execution in interleaved and serial addressing

24

	Team Information
	Introduction & Motivation
	Background & Related Work
	Manual Optimization
	Optimization through LLMs

	System Design / Approach
	Manual Optimization
	Manual Strategy 1: Baseline Parallel Reduction (Interleaved Addressing)
	Manual Strategy 2a: Serial Addressing
	Manual Strategy 2b: Shared Memory
	Manual Strategy 2c: Initial sum during memory transfer
	Manual Strategy 3a: Last Warp Unrolling
	Manual Strategy 3b: Warp shuffle instructions
	Complete loop unrolling

	Optimization through LLMs
	Zero-Shot Generation Approach
	Multi-Seed Generation Approach

	Implementation
	Manual Optimization
	Optimization through LLMs
	Model Selection and API Integration
	Prompt Engineering Pipeline
	Testing and Benchmarking Framework
	Challenges and Decision Points

	Experimental Setup
	Results & Analysis
	Manual Optimization
	Optimization through LLMs
	Performance Comparison
	Implementation Analysis
	Optimization Strategy Effectiveness
	Multi-Seed vs. Single-Shot Comparison

	Reproducibility & Git Repository
	Conclusion & Future Work
	Key Findings
	Manual Optimization Insights
	LLM-Generated Code Insights
	Comparative Analysis

	Challenges
	Future Work
	Broader Implications

	Appendix
	Manual Optimization
	Warp level execution difference between Manual Strategy 1 and Manual Strategy 2a

